Amidy

Amidyorganiczne związki chemiczne zawierające grupę amidową RNR′R″, gdzie R = reszta kwasowa; R′, R″ = wodór lub dowolna grupa organiczna. Amidy szeroko występują w przyrodzie. Są pochodnymi kwasów (zarówno organicznych, jak i nieorganicznych). Amidami są też polimery nazywane poliamidami. Szczególnym przypadkiem poliamidów są peptydy i białka. Są to polimery powstające z α-aminokwasów. W przypadku peptydów i białek stosuje się termin wiązanie peptydowe zamiast terminu wiązanie amidowe. Jest to jednak takie samo wiązanie, a terminy te można uważać za synonimy.

Klasyfikacja

Wzór ogólny karboksyamidu (R, R′, R″ = H lub grupa organiczna)

Ze względu na rzędowość, amidy dzielą się na[1]:

  • pierwszorzędowe – mające jedną grupę acylową przy atomie azotu,
  • drugorzędowe – mające dwie grupy acylowe (są to więc imidy)
  • trzeciorzędowe – mające trzy grupy acylowe (triacyloaminy)

Międzynarodowa Unia Chemii Czystej i Stosowanej nie zaleca określać amidów jako pierwszo-, drugo- i trzeciorzędowych ze względu na liczbę podstawionych atomów wodoru w grupie NH
2
[1].

Ze względu na pochodzenie możemy wyróżnić m.in.:

Otrzymywanie

Amidy można otrzymać głównie przez reakcje[3]:

z

  • amoniakiem (amidy pierwszorzędowe),
  • aminą pierwszorzędową (amidy drugorzędowe),
  • aminą drugorzędową (amidy trzeciorzędowe).

Przykładowe metody otrzymywania amidów[4]:

  • metoda mieszanych bezwodników
  • metoda karbodiimidowa – w reakcji kwasów karboksylowych z aminami pierwszorzędowymi w obecności DCC jako czynnika sprzęgającego
  • metoda karbodiimidowa z dodatkami – w reakcji kwasów karboksylowych z pierwszorzędowymi aminami w obecności DCC oraz odpowiednimi „dodatkami” np. N-hydroksysukcynoimidem, 3-hydroksy-4-keto-1,2,3-benzotriazyną lub N-hydroksybenzotriazolem (HOBt)[5][6]

Amidy arylowe otrzymać można z iminoeterów (R1
OC(=NR2
)R3
) w wyniku przegrupowania Chapmana[7]. Reakcja przebiega na drodze wewnątrzcząsteczkowej aromatycznej substytucji nukleofilowej (SNAr):

Przegrupowanie Chapmana

Odmianę przegrupowania Chapmana zaobserwowano podczas benzoilowania reszty pirymidynowej urydyny. Produktem kinetycznym reakcji jest O4–benzoilourydyna, która w ciągu kilku godzin ulega spontanicznemu przegrupowaniu do N3-benzoilourydyny[8]:

Benzoilowanie urydyny

Właściwości chemiczne

Amidy są amfolitami, tzn. reagują zarówno z kwasami, jak i z zasadami, co jest spowodowane występowaniem tautomerii amidowo-imidowej. Wiązanie amidowe jest zazwyczaj trwalsze od innych pochodnych kwasów karboksylowych (estrów, bezwodników kwasowych i halogenków kwasowych).

Najważniejsze reakcje

  • hydroliza w środowisku kwasowym do kwasów i soli
  • hydroliza w środowisku zasadowym do soli i amoniaku lub amin
  • estryfikacja alkoholami, katalizowana przez kwasy
  • redukcja amidów do amin
  • dehydratacja pierwszorzędowych amidów do nitryli.

Zastosowanie

Amidy znalazły zastosowanie między innymi w lecznictwie, w przemyśle tworzyw sztucznych, jako plastyfikator, rozpuszczalnik, środek zwilżający w produkcji lakierów i materiałów wybuchowych, do impregnacji tkanin nieprzemakalnych (amidy kwasu stearynowego). Nukleozydowe amidy kwasu fosfonowego (amidofosforyny nukleozydów) są niezwykle reaktywne[9] i wykorzystywane są jako najczęściej stosowane syntony do chemicznej syntezy oligonukleotydów.

Zobacz też

Przypisy

  1. a b amides, [w:] A.D.A.D. McNaught A.D.A.D., A.A. Wilkinson A.A., Compendium of Chemical Terminology (Gold Book), S.J. Chalk (akt.), International Union of Pure and Applied Chemistry, wyd. 2, Oxford: Blackwell Scientific Publications, 1997, DOI: 10.1351/goldbook.A00266, ISBN 0-9678550-9-8  (ang.).
  2. carboxamides, [w:] A.D.A.D. McNaught A.D.A.D., A.A. Wilkinson A.A., Compendium of Chemical Terminology (Gold Book), S.J. Chalk (akt.), International Union of Pure and Applied Chemistry, wyd. 2, Oxford: Blackwell Scientific Publications, 1997, DOI: 10.1351/goldbook.C00850, ISBN 0-9678550-9-8  (ang.).
  3. C.A.G.N.C.A.G.N. Montalbetti C.A.G.N.C.A.G.N., V.V. Falque V.V., Amide bond formation and peptide coupling, „Tetrahedron”, 61, 2005, s. 10827–10852, DOI: 10.1016/j.tet.2005.08.031  (ang.).
  4. Synteza amidów metodami mieszanych bezwodników, karbodiimidową i karbodiimidową z dodatkami, [w:] Preparatyka i elementy syntezy organicznej, Jerzy T.J.T. Wróbel (red.), Warszawa: Wydawnictwo Naukowe PWN, 1983, s. 842–847, ISBN 83-01-02392-9 .
  5. D.D. Łowicki D.D. i inni, Syntheses, structural and antimicrobial studies of a new N-allylamide of monensin A and its complexes with monovalent metal cations, „Tetrahedron”, 65, 2009, s. 7730–7740, DOI: 10.1016/j.tet.2009.06.077  (ang.).
  6. D.D. Łowicki D.D., Structural and antimicrobial studies of a new N-phenylamide of monensin A complex with sodium chloride, „Journal of Molecular Structure”, 923, 2009, s. 53–59, DOI: 10.1016/j.molstruc.2009.01.056  (ang.).
  7. V.F.V.F. Burdukovskiy V.F.V.F., D.M.D.M. Mognonov D.M.D.M., I.A.I.A. Farion I.A.I.A., Chapman rearrangement in the synthesis of aromatic polyamides, „Journal of Polymer Science Part A: Polymer Chemistry”, 45 (20), 2007, s. 4656–4660, DOI: 10.1002/pola.22212 .
  8. M.M. Sekine M.M., General Method for the Preparation of N-3-Substituted and O-4-Substituted Uridine Derivatives by Phase-Transfer Reactions, „Journal of Organic Chemistry”, 54 (10), 1989, s. 2321–2326, DOI: 10.1021/jo00271a015 .
  9. S.L.S.L. Beaucage S.L.S.L., M.H.M.H. Caruthers M.H.M.H., Deoxynucleoside Phosphoramidites – A New Class of Key Intermediates for Deoxypolynucleotide Synthesis, „Tetrahedron Letters”, 22 (20), 1981, s. 1859–1862, DOI: 10.1016/S0040-4039(01)90461-7  (ang.).
Kontrola autorytatywna (strukturalna klasa indywiduów chemicznych):
  • LCCN: sh85004464
  • GND: 4279702-0
  • BnF: 12269638j
  • BNCF: 65224
  • NKC: ph238361
  • J9U: 987007294065705171
Encyklopedia internetowa:
  • PWN: 3868728
  • Britannica: science/amide
  • Universalis: amides
  • NE.se: amider
  • SNL: amider
  • DSDE: amid