ボルツマンの原理

統計力学


熱力学 · 気体分子運動論
粒子統計
マクスウェル=ボルツマン

ボース=アインシュタイン
フェルミ=ディラック
パラ · エニオン · 組み紐(英語版)

アンサンブル
ミクロカノニカルアンサンブル

カノニカルアンサンブル
グランドカノニカルアンサンブル
等温定圧アンサンブル
等エンタルピー-定圧

熱力学
気体の法則(英語版) · カルノーサイクル

デュロン=プティの法則

模型
デバイ · アインシュタイン · イジング
熱力学ポテンシャル
内部エネルギー
エンタルピー
ヘルムホルツの自由エネルギー
ギブズの自由エネルギー
グランドポテンシャル
科学者
マクスウェル · ギブズ · ボルツマン · アインシュタイン · オンサーガー · ウィルソン · 久保亮五 · カダノフ · フィッシャー · 川崎恭治 · パリージ · エドワーズ · ローレンツ · 蔵本由紀 · ジャルジンスキー
ウィーン中央墓地にあるルートヴィヒ・ボルツマンの墓碑には、ボルツマンの公式が刻まれている

ボルツマンの原理(ボルツマンの関係式、ボルツマンの公式)とは、統計力学において、系の微視的な状態数から巨視的な熱力学ポテンシャルであるエントロピーを与える関係式である。 ボルツマンの原理により、状態数 W からエントロピー S

S = k log W {\displaystyle S=k\log W}

で与えられる。ここで対数 log に自然対数を用いるとき、係数 kボルツマン定数である。

エントロピー増大則により、断熱過程においてエントロピーが減ることはなく、不可逆な断熱過程においてはエントロピーが増える。自由膨張のような不可逆な変化は、系が微視的に取り得る状態を増やす。これはエントロピーが状態数の増加関数であることを示唆している[1]

この式はボルツマンによって1872年から1875年にかけて最初に定式化され、1900年にマックス・プランクによって現在の形に書き直された。

二つの独立な系の状態数がそれぞれ W1, W2 であるとき、これらを合成した系の状態数は W1×W2 で表される。一方、それぞれの系のエントロピーがそれぞれ S1, S2 であるとき、これらを合成した系のエントロピーは S1+S2 で表される。したがって、エントロピーが状態数の関数として表されるならば、状態数の対数に比例する[1]

1934年にスイスの物理化学者ヴェルナー・クーン(英語版)は、ボルツマンの公式を用いて、ゴム分子の状態方程式を導出することに成功した。これはゴムのエントロピーモデルとして知られる。

脚注

  1. ^ a b Toda, Kubo & Saito, p.30

参考文献

  • M.Toda, R.Kubo and N.Saito (1992). Statistical Physics I - Equilibrium Statistical Mechanics. Solid-State Sciences (2nd ed.). Springer. ISBN 3-540-53662-0 

関連項目

外部リンク

  • Introduction to Boltzmann's Equation(2002年11月18日時点のアーカイブ
統計集団
統計熱力学
  • 特性状態関数(英語版)
分配関数
  • 並進(英語版)
  • 振動(英語版)
  • 回転(英語版)
状態方程式
エントロピー
粒子統計
統計的場の理論
  • 共形場理論
  • オスターワルダー–シュレーダーの公理(英語版)
量子統計力学
その他
スタブアイコン

この項目は、物理学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:物理学/Portal:物理学)。

  • 表示
  • 編集