Teoria de campo de Qubits

Mecânica quântica
Δ x Δ p 2 {\displaystyle {\Delta x}\,{\Delta p}\geq {\frac {\hbar }{2}}}
Princípio da Incerteza
Introdução à mecânica quântica

Formulação matemática

Introdução
Mecânica clássica
Antiga teoria quântica
Interferência · Notação Bra-ket
Hamiltoniano
Conceitos fundamentais
Estado quântico · Função de onda
Superposição · Emaranhamento

· Incerteza
Efeito do observador
Exclusão · Dualidade
Decoerência · Teorema de Ehrenfest · Tunelamento

Experiências
Experiência de dupla fenda
Experimento de Davisson–Germer
Experimento de Stern-Gerlach
Experiência da desigualdade de Bell
Experiência de Popper
Gato de Schrödinger
Problema de Elitzur-Vaidman
Borracha quântica
Representações
Representação de Schrödinger
Representação de Heisenberg
Representação de Dirac
Mecânica matricial
Integração funcional
Equações
Equação de Schrödinger
Equação de Pauli
Equação de Klein–Gordon
Equação de Dirac
Interpretações
Copenhague · Conjunta
Teoria das variáveis ocultas · Transacional
Muitos mundos · Histórias consistentes
Lógica quântica · Interpretação de Bohm
Estocástica · Mecânica quântica emergente
Tópicos avançados
Teoria quântica de campos
Gravitação quântica
Teoria de tudo
Mecânica quântica relativística
Teoria de campo de Qubits
Cientistas
* Bell* Blackett* Bogolyubov* Bohm* Bohr* Bardeen* Born* Bose* de Broglie* Compton* Cooper* Dirac* Davisson * Duarte* Ehrenfest* Einstein* Everett* Feynman* Hertz* Heisenberg* Jordan* Klitzing* Kusch* Kramers* von Neumann* Pauli* Lamb* Laue* Laughlin* Moseley* Millikan* Onnes* Planck* Raman* Richardson* Rydberg* Schrödinger* Störmer* Shockley* Schrieffer* Shull* Sommerfeld* Thomson* Tsui* Ward* Wien* Wigner* Zeeman* Zeilinger* Zurek
Esta caixa:
  • ver
  • discutir
  • editar

Uma teoria de campos de qubits é uma teoria quântica de campos na qual as relações de comutação canônica[1] envolvidas na quantização de pares de observáveis são relaxadas.[2][3]

Teoria

Em muitas teorias de campos quânticos comuns, restringir uma observável a um valor fixo resulta na incerteza da outra observável sendo infinita (cf. princípio da incerteza) e, como conseqüência, há potencialmente uma quantidade infinita de informações envolvidas.[4][5] Na situação da comutação posição-momento padrão (onde o princípio da incerteza é mais comumente citado), isso implica que um volume de espaço fixo, finito, tem uma capacidade infinita para armazenar informações. No entanto, o limite de Bekenstein sugere que a capacidade de armazenamento de informações deve ser finita.[6] A teoria de campos Qubit procura resolver esse problema removendo a restrição de comutação, permitindo que a capacidade de armazenar informações seja finita; daí o nome qubit, que deriva de bit quântico ou bit quantizado.[7]

David Deutsch apresentou um grupo de teorias de campos qubit que, apesar de não exigir a comutação de certos observáveis, ainda apresenta os mesmos resultados observáveis que a teoria quântica de campos comum.[8] J. Hruby apresentou uma extensão supersimétrica.[9]

Referências

  1. Born, M.; Jordan, P. (dezembro de 1925). «Zur Quantenmechanik». Zeitschrift fur Physik (em alemão). 34 (1): 858–888. ISSN 1434-6001. doi:10.1007/BF01328531 
  2. «Applied Physics 150a: Final Homework #4» (PDF). Instituto de ciência e engenharia da Caltech. 10 de dezembro de 2014 
  3. Coecke, Bob; Kissinger, Aleks (18 de janeiro de 2018). «Categorical Quantum Mechanics I: Causal Quantum Processes». Oxford Scholarship Online. doi:10.1093/oso/9780198748991.003.0012 
  4. Marletto, Chiara; Vedral, Vlatko; Virzì, Salvatore; Rebufello, Enrico; Avella, Alessio; Piacentini, Fabrizio; Gramegna, Marco; Degiovanni, Ivo Pietro; Genovese, Marco (14 de janeiro de 2019). «Theoretical description and experimental simulation of quantum entanglement near open time-like curves via pseudo-density operators». Nature Communications. 10 (1). ISSN 2041-1723. doi:10.1038/s41467-018-08100-1 
  5. Gupta, B.B.; Quamara, Megha (8 de agosto de 2019). «Data Security in Smart Cards». CRC Press: 45–54. ISBN 978-0-429-34559-3 
  6. Bruce, Colin (13 de outubro de 2004). Schrödinger's Rabbits: The Many Worlds of Quantum (em inglês). [S.l.]: Joseph Henry Press 
  7. Frydryszak, Andrzej M (28 de janeiro de 2013). «Qubits, superqubits and squbits». Journal of Physics: Conference Series. 411. 012015 páginas. ISSN 1742-6596. doi:10.1088/1742-6596/411/1/012015 
  8. Deutsch, David (6 de janeiro de 2004). «Qubit Field Theory». arXiv:quant-ph/0401024 
  9. Hruby, J. (25 de fevereiro de 2004). «Supersymmetry and Qubit Field Theory». arXiv:quant-ph/0402188 
Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.
  • v
  • d
  • e
  • Portal da ciência
  • Portal da física
  • Portal da história da ciência