Méson B

Méson B são uma família de mésons compostos por um antiquark bottom e qualquer outro quark (com exceção dos top), como up (B+), down (B0), strange (B0S) ou charm quark (B+c). A combinação de um antiquark bottom com um quark top não foi pensada para ser possível, uma vez que a vida curta do quark top é inferior ao tempo necessário para que a interação forte se manifeste e crie partículas compostas. A combinação de um antiquark bottom e um quark bottom não é um méson B, mas sim um bottomônio.

Cada méson B tem uma antipartícula que é composta por um quark bottom e um antiquark de quark up (B-), down (B-0), strange (B-os) ou charm (B-c) respectivamente.

Lista de mésons B

Mésons B
Partícula Símbolo Anti-partícula Quarks
constituintes
Carga Isospin
(I)
Spin e paridade
(JP)
massa de repouso
(MeV/c2)
S C B' Vida média
(s)
Comunalmente decai para
B meson B + B- U-B +1 ½ 0 5279,15 ± 0,31 0 0 +1 1,638±0,011-12 [1]
Méson B B0 B-0 D-B 0 ½ 0 5279,53 ± 0,33 0 0 +1 1,530±0,009-12 [2]
Méson estranho B B0S B-os S-B 0 0 0 5366,3 ± 0,6 −1 0 +1 1,470+0,0270,026 x 10-12 [3]
Méson charme B B+c B-c C-B +1 0 0 6,276 ± 4 0 +1 +1 0,46±0,07-12 [4]

Oscilações B–Bbar

Os méson B neutros, B0 e B0s, espontaneamente se transformam em suas próprias anti-partículas e voltam. Esse fenômeno é chamado de oscilação de partícula neutra. A existência de oscilações de mésons B neutros é uma previsão fundamental do modelo padrão da física de partículas. Isso tem sido medido pelo sistema B0–B-0 para uma vida de 0.496 ps-1,[1] e no sistema B0s–B-0s para ser de Δms = 17.77 ± 0.10 (stat) ± 0.07 (syst) ps−1, medido pelo experimento CDF no Fermilab.[2] Uma primeira estimativa do valor do limite inferior e superior do sistema B0s–B-0s tem sido feitas pelo experimento DØ e também no Fermilab.[3]

Em 25 de setembro de 2006, o Fermilab anunciou que eles descobriram a previamente teorizada oscilação Bs.[4] De acordo com o comunicado de imprensa do Fermilab:

Essa maior descoberta de Run 2 continua a tradição de física de partículas e descobertas de partículas no Fermilab, onde os quarks bottom (1977) e top (1995) foram descobertos. Surpreendentemente, o comportamento bizarro dos mésons B_s (pronunciado "B sub s") é na verdade previsto pelo modelo padrão de partículas e forças fundamentais. A descoberta desse comportamento oscilatório é então outro reforço da durabilidade do modelo padrão... Físicos do CDF têm previamente medido a taxa de transições de matéria-antimatéria para mésons B_s, que consiste do pesado quark bottom unido pela interação nuclear forte a um antiquark estranho. Agora eles tem alcançado o padrão para a descoberta no campo da física de partículas, onde a probabilidade para uma falsa observação deve ser menor que 5 em 10 milhões (5/10.000.000). Para resultados do CDF a probabilidade é ainda menor, de 8 em 100 milhões(8/100,000,000).

Ronald Kotulak escrevendo para o Tribuna de Chicago, chamou a partícula de "bizarra" e afirmou que o méson "talvez abra a porta para uma nova era da física" com sua comprovadas interações com o "reino assustador da antimatéria".[5]

Em 14 de maio de 2010, físicos no Fermi National Accelerator Laboratory reportaram que as oscilações decaíram em matéria 1% mais que em antimatéria, e que isso pode talvez explicar a abundância de matéria sobre a antimatéria no universo observado.[6] Contudo, resultados mais recentes no LHCb com largas datas de amostras não em sugerido grandes desviações do modelopadrão.[7]

Veja também

Referências

  1. http://repository.ubn.ru.nl/bitstream/2066/26242/
  2. A. Abulencia et al. (CDF Collaboration) (2006). «Observation of – Oscillations». Physical Review Letters. 97 (24). 242003 páginas. Bibcode:2006PhRvL..97x2003A. arXiv:hep-ex/0609040Acessível livremente. doi:10.1103/PhysRevLett.97.242003 
  3. V.M. Abazov et al. (D0 Collaboration) (2006). «Direct Limits on the Bs0 Oscillation Frequency» (PDF). Physical Review Letters. 97 (2). 021802 páginas. Bibcode:2006PhRvL..97b1802A. arXiv:hep-ex/0603029Acessível livremente. doi:10.1103/PhysRevLett.97.021802 
  4. «It might be…It could be…It is!!!» (Nota de imprensa). Fermilab. 25 de setembro de 2006. Consultado em 8 de dezembro de 2007 
  5. R. Kotulak (26 de setembro de 2006). «Antimatter discovery could alter physics: Particle tracked between real world, spooky realm». Deseret News. Consultado em 8 de dezembro de 2007. Cópia arquivada em 29 de novembro de 2007 
  6. A New Clue to Explain Existence
  7. Article on LHCb results

Ligações externas

  • W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) and 2007 partial update for edition 2008 (URL: http://pdg.lbl.gov)
  • V. Jamieson (18 de março de 2008). «Flipping particle could explain missing antimatter». New Scientist. Consultado em 23 de janeiro de 2010 
  • v
  • d
  • e
Elementar
Férmions
Quarks
u · d · c · s · t · b ·
u
 ·
d
 ·
c
 ·
s
 ·
t
 ·
b
Léptons

e
 ·
e+
 ·
μ
 ·
μ+
 ·
τ
 ·
τ+
 ·
ν
e
 ·
ν
e
 ·
ν
μ
 ·
ν
μ
 ·
ν
τ
 ·
ν
τ
Bósons
Gauge

γ
 ·
g
 ·
W±
 ·
Z
Escalar

H0
Outras
Hipotéticas
S-partículas
Gauginos
Outras
Outras
A0 · Dilaton · G ·
J
 · m · Táquion ·
X
 ·
Y
 · W' · Z' · Neutrino estéril
Composta
Hádrons
Bárions / Híperons

N
(
p
 ·
n
· Δ · Λ ·
Σ
 · Ξ ·
Ω
Mésons / Quarkónio

π
 ·
ρ
 ·
η
 ·
η′
 ·
φ
 ·
ω
 ·
J/ψ
 ·
ϒ
 ·
θ
 ·
K
 ·
B
 ·
D
 ·
T
Outros
Hipotéticas
Hádrons exóticos
Bárions exóticos
Mésons exóticos
Outras
Quase-partículas
Collexon · Sóliton de Davydov · Excíton · Elétron-buraco · Magnon · Fônon · Pi-ton · Plasmaron · Plasmon · Polariton · Polaron · Roton · Trion
Listas
Lista de partículas · Lista de quasipartículas · Lista de bárions · Lista de mésons · Cronologia da descoberta de partículas