Navier-Stokes-ligningene

Denne artikkelen mangler kildehenvisninger, og opplysningene i den kan dermed være vanskelige å verifisere. Kildeløst materiale kan bli fjernet. Helt uten kilder. (10. okt. 2015)

Navier–Stokes-ligningene, oppkalt etter Claude-Louis Navier og George Gabriel Stokes, er en ligning som beskriver bevegelse av viskøse væsker og gasser. Ligningen er en ikke-lineær, partiell differensialligning.

Vektorligningen er

ρ ( v t + v v ) = p + T + f . {\displaystyle \rho \left({\frac {\partial \mathbf {v} }{\partial t}}+\mathbf {v} \cdot \nabla \mathbf {v} \right)=-\nabla p+\nabla \cdot \mathbb {T} +\mathbf {f} .}

For et newtonsk fluid kan leddet T {\displaystyle \nabla \cdot \mathbb {T} } erstattes med μ 2 v {\displaystyle \mu \nabla ^{2}\mathbf {v} } , der μ {\displaystyle \mu } er den dynamiske viskositetskonstanten for fluidet.

Kartesiske koordinater

Ved å skrive ut komponentene i vektorligningen over får vi følgende ligninger for impulsen i 3-D,

ρ ( u t + u u x + v u y + w u z ) = p x + μ ( 2 u x 2 + 2 u y 2 + 2 u z 2 ) + ρ g x {\displaystyle \rho \left({\frac {\partial u}{\partial t}}+u{\frac {\partial u}{\partial x}}+v{\frac {\partial u}{\partial y}}+w{\frac {\partial u}{\partial z}}\right)=-{\frac {\partial p}{\partial x}}+\mu \left({\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}+{\frac {\partial ^{2}u}{\partial z^{2}}}\right)+\rho g_{x}}
ρ ( v t + u v x + v v y + w v z ) = p y + μ ( 2 v x 2 + 2 v y 2 + 2 v z 2 ) + ρ g y {\displaystyle \rho \left({\frac {\partial v}{\partial t}}+u{\frac {\partial v}{\partial x}}+v{\frac {\partial v}{\partial y}}+w{\frac {\partial v}{\partial z}}\right)=-{\frac {\partial p}{\partial y}}+\mu \left({\frac {\partial ^{2}v}{\partial x^{2}}}+{\frac {\partial ^{2}v}{\partial y^{2}}}+{\frac {\partial ^{2}v}{\partial z^{2}}}\right)+\rho g_{y}}
ρ ( w t + u w x + v w y + w w z ) = p z + μ ( 2 w x 2 + 2 w y 2 + 2 w z 2 ) + ρ g z {\displaystyle \rho \left({\frac {\partial w}{\partial t}}+u{\frac {\partial w}{\partial x}}+v{\frac {\partial w}{\partial y}}+w{\frac {\partial w}{\partial z}}\right)=-{\frac {\partial p}{\partial z}}+\mu \left({\frac {\partial ^{2}w}{\partial x^{2}}}+{\frac {\partial ^{2}w}{\partial y^{2}}}+{\frac {\partial ^{2}w}{\partial z^{2}}}\right)+\rho g_{z}}

For en ikke-kompressibel væske gir kontinuitetsligningen:

u x + v y + w z = 0 {\displaystyle {\partial u \over \partial x}+{\partial v \over \partial y}+{\partial w \over \partial z}=0}

Sylinderkoordinater

Et variabelskifte på ligningssettet i kartesiske koordinater gir impulsligningene for r, θ, og z:

ρ ( u r t + u r u r r + u θ r u r θ + u z u r z u θ 2 r ) = p r + μ [ 1 r r ( r u r r ) + 1 r 2 2 u r θ 2 + 2 u r z 2 u r r 2 2 r 2 u θ θ ] + ρ g r {\displaystyle \rho \left({\frac {\partial u_{r}}{\partial t}}+u_{r}{\frac {\partial u_{r}}{\partial r}}+{\frac {u_{\theta }}{r}}{\frac {\partial u_{r}}{\partial \theta }}+u_{z}{\frac {\partial u_{r}}{\partial z}}-{\frac {u_{\theta }^{2}}{r}}\right)=-{\frac {\partial p}{\partial r}}+\mu \left[{\frac {1}{r}}{\frac {\partial }{\partial r}}\left(r{\frac {\partial u_{r}}{\partial r}}\right)+{\frac {1}{r^{2}}}{\frac {\partial ^{2}u_{r}}{\partial \theta ^{2}}}+{\frac {\partial ^{2}u_{r}}{\partial z^{2}}}-{\frac {u_{r}}{r^{2}}}-{\frac {2}{r^{2}}}{\frac {\partial u_{\theta }}{\partial \theta }}\right]+\rho g_{r}}
ρ ( u θ t + u r u θ r + u θ r u θ θ + u z u θ z + u r u θ r ) = 1 r p θ + μ [ 1 r r ( r u θ r ) + 1 r 2 2 u θ θ 2 + 2 u θ z 2 + 2 r 2 u r θ u θ r 2 ] + ρ g θ {\displaystyle \rho \left({\frac {\partial u_{\theta }}{\partial t}}+u_{r}{\frac {\partial u_{\theta }}{\partial r}}+{\frac {u_{\theta }}{r}}{\frac {\partial u_{\theta }}{\partial \theta }}+u_{z}{\frac {\partial u_{\theta }}{\partial z}}+{\frac {u_{r}u_{\theta }}{r}}\right)=-{\frac {1}{r}}{\frac {\partial p}{\partial \theta }}+\mu \left[{\frac {1}{r}}{\frac {\partial }{\partial r}}\left(r{\frac {\partial u_{\theta }}{\partial r}}\right)+{\frac {1}{r^{2}}}{\frac {\partial ^{2}u_{\theta }}{\partial \theta ^{2}}}+{\frac {\partial ^{2}u_{\theta }}{\partial z^{2}}}+{\frac {2}{r^{2}}}{\frac {\partial u_{r}}{\partial \theta }}-{\frac {u_{\theta }}{r^{2}}}\right]+\rho g_{\theta }}
ρ ( u z t + u r u z r + u θ r u z θ + u z u z z ) = p z + μ [ 1 r r ( r u z r ) + 1 r 2 2 u z θ 2 + 2 u z z 2 ] + ρ g z {\displaystyle \rho \left({\frac {\partial u_{z}}{\partial t}}+u_{r}{\frac {\partial u_{z}}{\partial r}}+{\frac {u_{\theta }}{r}}{\frac {\partial u_{z}}{\partial \theta }}+u_{z}{\frac {\partial u_{z}}{\partial z}}\right)=-{\frac {\partial p}{\partial z}}+\mu \left[{\frac {1}{r}}{\frac {\partial }{\partial r}}\left(r{\frac {\partial u_{z}}{\partial r}}\right)+{\frac {1}{r^{2}}}{\frac {\partial ^{2}u_{z}}{\partial \theta ^{2}}}+{\frac {\partial ^{2}u_{z}}{\partial z^{2}}}\right]+\rho g_{z}}

Kontinuitetsligningen gir:

1 r r ( r u r ) + 1 r u θ θ + u z z = 0. {\displaystyle {\frac {1}{r}}{\frac {\partial }{\partial r}}\left(ru_{r}\right)+{\frac {1}{r}}{\frac {\partial u_{\theta }}{\partial \theta }}+{\frac {\partial u_{z}}{\partial z}}=0.}

Kulekoordinater

ρ ( u r t + u r u r r + u ϕ r sin ( θ ) u r ϕ + u θ r u r θ u ϕ 2 + u θ 2 r ) = p r + ρ g r {\displaystyle \rho \left({\frac {\partial u_{r}}{\partial t}}+u_{r}{\frac {\partial u_{r}}{\partial r}}+{\frac {u_{\phi }}{r\sin(\theta )}}{\frac {\partial u_{r}}{\partial \phi }}+{\frac {u_{\theta }}{r}}{\frac {\partial u_{r}}{\partial \theta }}-{\frac {u_{\phi }^{2}+u_{\theta }^{2}}{r}}\right)=-{\frac {\partial p}{\partial r}}+\rho g_{r}}
μ [ 1 r 2 r ( r 2 u r r ) + 1 r 2 sin ( θ ) 2 2 u r ϕ 2 + 1 r 2 sin ( θ ) θ ( sin ( θ ) u r θ ) 2 u r + u θ θ + u θ cot ( θ ) r 2 + 2 r 2 sin ( θ ) u ϕ ϕ ] {\displaystyle \mu \left[{\frac {1}{r^{2}}}{\frac {\partial }{\partial r}}\left(r^{2}{\frac {\partial u_{r}}{\partial r}}\right)+{\frac {1}{r^{2}\sin(\theta )^{2}}}{\frac {\partial ^{2}u_{r}}{\partial \phi ^{2}}}+{\frac {1}{r^{2}\sin(\theta )}}{\frac {\partial }{\partial \theta }}\left(\sin(\theta ){\frac {\partial u_{r}}{\partial \theta }}\right)-2{\frac {u_{r}+{\frac {\partial u_{\theta }}{\partial \theta }}+u_{\theta }\cot(\theta )}{r^{2}}}+{\frac {2}{r^{2}\sin(\theta )}}{\frac {\partial u_{\phi }}{\partial \phi }}\right]}
ρ ( u θ t + u r u θ r + u ϕ r sin ( θ ) u θ ϕ + u θ r u θ θ + u r u θ u ϕ 2 cot ( θ ) r ) = 1 r p θ + ρ g θ {\displaystyle \rho \left({\frac {\partial u_{\theta }}{\partial t}}+u_{r}{\frac {\partial u_{\theta }}{\partial r}}+{\frac {u_{\phi }}{r\sin(\theta )}}{\frac {\partial u_{\theta }}{\partial \phi }}+{\frac {u_{\theta }}{r}}{\frac {\partial u_{\theta }}{\partial \theta }}+{\frac {u_{r}u_{\theta }-u_{\phi }^{2}\cot(\theta )}{r}}\right)=-{\frac {1}{r}}{\frac {\partial p}{\partial \theta }}+\rho g_{\theta }}
μ [ 1 r 2 r ( r 2 u θ r ) + 1 r 2 sin ( θ ) 2 2 u θ ϕ 2 + 1 r 2 sin ( θ ) θ ( sin ( θ ) u θ θ ) + 2 r 2 u r θ u θ + 2 cos ( θ ) u ϕ ϕ r 2 sin ( θ ) 2 ] {\displaystyle \mu \left[{\frac {1}{r^{2}}}{\frac {\partial }{\partial r}}\left(r^{2}{\frac {\partial u_{\theta }}{\partial r}}\right)+{\frac {1}{r^{2}\sin(\theta )^{2}}}{\frac {\partial ^{2}u_{\theta }}{\partial \phi ^{2}}}+{\frac {1}{r^{2}\sin(\theta )}}{\frac {\partial }{\partial \theta }}\left(\sin(\theta ){\frac {\partial u_{\theta }}{\partial \theta }}\right)+{\frac {2}{r^{2}}}{\frac {\partial u_{r}}{\partial \theta }}-{\frac {u_{\theta }+2\cos(\theta ){\frac {\partial u_{\phi }}{\partial \phi }}}{r^{2}\sin(\theta )^{2}}}\right]}
ρ ( u ϕ t + u r u ϕ r + u ϕ r sin ( θ ) u ϕ ϕ + u θ r u ϕ θ + u r u ϕ + u ϕ u θ cot ( θ ) r ) = 1 r sin ( θ ) p ϕ + ρ g ϕ {\displaystyle \rho \left({\frac {\partial u_{\phi }}{\partial t}}+u_{r}{\frac {\partial u_{\phi }}{\partial r}}+{\frac {u_{\phi }}{r\sin(\theta )}}{\frac {\partial u_{\phi }}{\partial \phi }}+{\frac {u_{\theta }}{r}}{\frac {\partial u_{\phi }}{\partial \theta }}+{\frac {u_{r}u_{\phi }+u_{\phi }u_{\theta }\cot(\theta )}{r}}\right)=-{\frac {1}{r\sin(\theta )}}{\frac {\partial p}{\partial \phi }}+\rho g_{\phi }}
μ [ 1 r 2 r ( r 2 u ϕ r ) + 1 r 2 sin ( θ ) 2 2 u ϕ ϕ 2 + 1 r 2 sin ( θ ) θ ( sin ( θ ) u ϕ θ ) + 2 u r ϕ + 2 cos ( θ ) u θ ϕ u ϕ r 2 sin ( θ ) 2 ] {\displaystyle \mu \left[{\frac {1}{r^{2}}}{\frac {\partial }{\partial r}}\left(r^{2}{\frac {\partial u_{\phi }}{\partial r}}\right)+{\frac {1}{r^{2}\sin(\theta )^{2}}}{\frac {\partial ^{2}u_{\phi }}{\partial \phi ^{2}}}+{\frac {1}{r^{2}\sin(\theta )}}{\frac {\partial }{\partial \theta }}\left(\sin(\theta ){\frac {\partial u_{\phi }}{\partial \theta }}\right)+{\frac {2{\frac {\partial u_{r}}{\partial \phi }}+2\cos(\theta ){\frac {\partial u_{\theta }}{\partial \phi }}-u_{\phi }}{r^{2}\sin(\theta )^{2}}}\right]}

Kontinuitetsligningen gir:

1 r 2 r ( r 2 u r ) + 1 r sin ( θ ) u ϕ ϕ + 1 r sin ( θ ) θ ( sin ( θ ) u θ ) = 0 {\displaystyle {\frac {1}{r^{2}}}{\frac {\partial }{\partial r}}\left(r^{2}u_{r}\right)+{\frac {1}{r\sin(\theta )}}{\frac {\partial u_{\phi }}{\partial \phi }}+{\frac {1}{r\sin(\theta )}}{\frac {\partial }{\partial \theta }}\left(\sin(\theta )u_{\theta }\right)=0}
Oppslagsverk/autoritetsdata
Encyclopædia Britannica · MathWorld · GND · LCCN · BNF · BNF (data) · SUDOC · NKC · BNE