Hermite constant

Constant relating to close packing of spheres

In mathematics, the Hermite constant, named after Charles Hermite, determines how long a shortest element of a lattice in Euclidean space can be.

The constant γn for integers n > 0 is defined as follows. For a lattice L in Euclidean space Rn with unit covolume, i.e. vol(Rn/L) = 1, let λ1(L) denote the least length of a nonzero element of L. Then γn is the maximum of λ1(L) over all such lattices L.

The square root in the definition of the Hermite constant is a matter of historical convention.

Alternatively, the Hermite constant γn can be defined as the square of the maximal systole of a flat n-dimensional torus of unit volume.

Example

The Hermite constant is known in dimensions 1–8 and 24.

n 1 2 3 4 5 6 7 8 24
γ n n {\displaystyle \gamma _{n}^{n}} 1 {\displaystyle 1} 4 3 {\displaystyle {\frac {4}{3}}} 2 {\displaystyle 2} 4 {\displaystyle 4} 8 {\displaystyle 8} 64 3 {\displaystyle {\frac {64}{3}}} 64 {\displaystyle 64} 2 8 {\displaystyle 2^{8}} 4 24 {\displaystyle 4^{24}}

For n = 2, one has γ2 = 2/3. This value is attained by the hexagonal lattice of the Eisenstein integers.[1]

Estimates

It is known that[2]

γ n ( 4 3 ) n 1 2 . {\displaystyle \gamma _{n}\leq \left({\frac {4}{3}}\right)^{\frac {n-1}{2}}.}

A stronger estimate due to Hans Frederick Blichfeldt[3] is[4]

γ n ( 2 π ) Γ ( 2 + n 2 ) 2 n , {\displaystyle \gamma _{n}\leq \left({\frac {2}{\pi }}\right)\Gamma \left(2+{\frac {n}{2}}\right)^{\frac {2}{n}},}

where Γ ( x ) {\displaystyle \Gamma (x)} is the gamma function.

See also

References

  1. ^ Cassels (1971) p. 36
  2. ^ Kitaoka (1993) p. 36
  3. ^ Blichfeldt, H. F. (1929). "The minimum value of quadratic forms, and the closest packing of spheres". Math. Ann. 101: 605–608. doi:10.1007/bf01454863. JFM 55.0721.01. S2CID 123648492.
  4. ^ Kitaoka (1993) p. 42
  • Cassels, J.W.S. (1997). An Introduction to the Geometry of Numbers. Classics in Mathematics (Reprint of 1971 ed.). Springer-Verlag. ISBN 978-3-540-61788-4.
  • Kitaoka, Yoshiyuki (1993). Arithmetic of quadratic forms. Cambridge Tracts in Mathematics. Vol. 106. Cambridge University Press. ISBN 0-521-40475-4. Zbl 0785.11021.
  • Schmidt, Wolfgang M. (1996). Diophantine approximations and Diophantine equations. Lecture Notes in Mathematics. Vol. 1467 (2nd ed.). Springer-Verlag. p. 9. ISBN 3-540-54058-X. Zbl 0754.11020.