Chandrasekhar's X- and Y-function

In atmospheric radiation, Chandrasekhar's X- and Y-function appears as the solutions of problems involving diffusive reflection and transmission, introduced by the Indian American astrophysicist Subrahmanyan Chandrasekhar.[1][2][3][4][5] The Chandrasekhar's X- and Y-function X ( μ ) ,   Y ( μ ) {\displaystyle X(\mu ),\ Y(\mu )} defined in the interval 0 μ 1 {\displaystyle 0\leq \mu \leq 1} , satisfies the pair of nonlinear integral equations

X ( μ ) = 1 + μ 0 1 Ψ ( μ ) μ + μ [ X ( μ ) X ( μ ) Y ( μ ) Y ( μ ) ] d μ , Y ( μ ) = e τ 1 / μ + μ 0 1 Ψ ( μ ) μ μ [ Y ( μ ) X ( μ ) X ( μ ) Y ( μ ) ] d μ {\displaystyle {\begin{aligned}X(\mu )&=1+\mu \int _{0}^{1}{\frac {\Psi (\mu ')}{\mu +\mu '}}[X(\mu )X(\mu ')-Y(\mu )Y(\mu ')]\,d\mu ',\\[5pt]Y(\mu )&=e^{-\tau _{1}/\mu }+\mu \int _{0}^{1}{\frac {\Psi (\mu ')}{\mu -\mu '}}[Y(\mu )X(\mu ')-X(\mu )Y(\mu ')]\,d\mu '\end{aligned}}}

where the characteristic function Ψ ( μ ) {\displaystyle \Psi (\mu )} is an even polynomial in μ {\displaystyle \mu } generally satisfying the condition

0 1 Ψ ( μ ) d μ 1 2 , {\displaystyle \int _{0}^{1}\Psi (\mu )\,d\mu \leq {\frac {1}{2}},}

and 0 < τ 1 < {\displaystyle 0<\tau _{1}<\infty } is the optical thickness of the atmosphere. If the equality is satisfied in the above condition, it is called conservative case, otherwise non-conservative. These functions are related to Chandrasekhar's H-function as

X ( μ ) H ( μ ) , Y ( μ ) 0   as   τ 1 {\displaystyle X(\mu )\rightarrow H(\mu ),\quad Y(\mu )\rightarrow 0\ {\text{as}}\ \tau _{1}\rightarrow \infty }

and also

X ( μ ) 1 , Y ( μ ) e τ 1 / μ   as   τ 1 0. {\displaystyle X(\mu )\rightarrow 1,\quad Y(\mu )\rightarrow e^{-\tau _{1}/\mu }\ {\text{as}}\ \tau _{1}\rightarrow 0.}

Approximation

The X {\displaystyle X} and Y {\displaystyle Y} can be approximated up to nth order as

X ( μ ) = ( 1 ) n μ 1 μ n 1 [ C 0 2 ( 0 ) C 1 2 ( 0 ) ] 1 / 2 1 W ( μ ) [ P ( μ ) C 0 ( μ ) e τ 1 / μ P ( μ ) C 1 ( μ ) ] , Y ( μ ) = ( 1 ) n μ 1 μ n 1 [ C 0 2 ( 0 ) C 1 2 ( 0 ) ] 1 / 2 1 W ( μ ) [ e τ 1 / μ P ( μ ) C 0 ( μ ) P ( μ ) C 1 ( μ ) ] {\displaystyle {\begin{aligned}X(\mu )&={\frac {(-1)^{n}}{\mu _{1}\cdots \mu _{n}}}{\frac {1}{[C_{0}^{2}(0)-C_{1}^{2}(0)]^{1/2}}}{\frac {1}{W(\mu )}}[P(-\mu )C_{0}(-\mu )-e^{-\tau _{1}/\mu }P(\mu )C_{1}(\mu )],\\[5pt]Y(\mu )&={\frac {(-1)^{n}}{\mu _{1}\cdots \mu _{n}}}{\frac {1}{[C_{0}^{2}(0)-C_{1}^{2}(0)]^{1/2}}}{\frac {1}{W(\mu )}}[e^{-\tau _{1}/\mu }P(\mu )C_{0}(\mu )-P(-\mu )C_{1}(-\mu )]\end{aligned}}}

where C 0 {\displaystyle C_{0}} and C 1 {\displaystyle C_{1}} are two basic polynomials of order n (Refer Chandrasekhar chapter VIII equation (97)[6]), P ( μ ) = i = 1 n ( μ μ i ) {\displaystyle P(\mu )=\prod _{i=1}^{n}(\mu -\mu _{i})} where μ i {\displaystyle \mu _{i}} are the zeros of Legendre polynomials and W ( μ ) = α = 1 n ( 1 k α 2 μ 2 ) {\displaystyle W(\mu )=\prod _{\alpha =1}^{n}(1-k_{\alpha }^{2}\mu ^{2})} , where k α {\displaystyle k_{\alpha }} are the positive, non vanishing roots of the associated characteristic equation

1 = 2 j = 1 n a j Ψ ( μ j ) 1 k 2 μ j 2 {\displaystyle 1=2\sum _{j=1}^{n}{\frac {a_{j}\Psi (\mu _{j})}{1-k^{2}\mu _{j}^{2}}}}

where a j {\displaystyle a_{j}} are the quadrature weights given by

a j = 1 P 2 n ( μ j ) 1 1 P 2 n ( μ j ) μ μ j d μ j {\displaystyle a_{j}={\frac {1}{P_{2n}'(\mu _{j})}}\int _{-1}^{1}{\frac {P_{2n}(\mu _{j})}{\mu -\mu _{j}}}\,d\mu _{j}}

Properties

  • If X ( μ , τ 1 ) ,   Y ( μ , τ 1 ) {\displaystyle X(\mu ,\tau _{1}),\ Y(\mu ,\tau _{1})} are the solutions for a particular value of τ 1 {\displaystyle \tau _{1}} , then solutions for other values of τ 1 {\displaystyle \tau _{1}} are obtained from the following integro-differential equations
X ( μ , τ 1 ) τ 1 = Y ( μ , τ 1 ) 0 1 d μ μ Ψ ( μ ) Y ( μ , τ 1 ) , Y ( μ , τ 1 ) τ 1 + Y ( μ , τ 1 ) μ = X ( μ , τ 1 ) 0 1 d μ μ Ψ ( μ ) Y ( μ , τ 1 ) {\displaystyle {\begin{aligned}{\frac {\partial X(\mu ,\tau _{1})}{\partial \tau _{1}}}&=Y(\mu ,\tau _{1})\int _{0}^{1}{\frac {d\mu '}{\mu '}}\Psi (\mu ')Y(\mu ',\tau _{1}),\\{\frac {\partial Y(\mu ,\tau _{1})}{\partial \tau _{1}}}+{\frac {Y(\mu ,\tau _{1})}{\mu }}&=X(\mu ,\tau _{1})\int _{0}^{1}{\frac {d\mu '}{\mu '}}\Psi (\mu ')Y(\mu ',\tau _{1})\end{aligned}}}
  • 0 1 X ( μ ) Ψ ( μ ) d μ = 1 [ 1 2 0 1 Ψ ( μ ) d μ + { 0 1 Y ( μ ) Ψ ( μ ) d μ } 2 ] 1 / 2 . {\displaystyle \int _{0}^{1}X(\mu )\Psi (\mu )\,d\mu =1-\left[1-2\int _{0}^{1}\Psi (\mu )\,d\mu +\left\{\int _{0}^{1}Y(\mu )\Psi (\mu )\,d\mu \right\}^{2}\right]^{1/2}.} For conservative case, this integral property reduces to 0 1 [ X ( μ ) + Y ( μ ) ] Ψ ( μ ) d μ = 1. {\displaystyle \int _{0}^{1}[X(\mu )+Y(\mu )]\Psi (\mu )\,d\mu =1.}
  • If the abbreviations x n = 0 1 X ( μ ) Ψ ( μ ) μ n d μ ,   y n = 0 1 Y ( μ ) Ψ ( μ ) μ n d μ ,   α n = 0 1 X ( μ ) μ n d μ ,   β n = 0 1 Y ( μ ) μ n d μ {\displaystyle x_{n}=\int _{0}^{1}X(\mu )\Psi (\mu )\mu ^{n}\,d\mu ,\ y_{n}=\int _{0}^{1}Y(\mu )\Psi (\mu )\mu ^{n}\,d\mu ,\ \alpha _{n}=\int _{0}^{1}X(\mu )\mu ^{n}\,d\mu ,\ \beta _{n}=\int _{0}^{1}Y(\mu )\mu ^{n}\,d\mu } for brevity are introduced, then we have a relation stating ( 1 x 0 ) x 2 + y 0 y 2 + 1 2 ( x 1 2 y 1 2 ) = 0 1 Ψ ( μ ) μ 2 d μ . {\displaystyle (1-x_{0})x_{2}+y_{0}y_{2}+{\frac {1}{2}}(x_{1}^{2}-y_{1}^{2})=\int _{0}^{1}\Psi (\mu )\mu ^{2}\,d\mu .} In the conservative, this reduces to y 0 ( x 2 + y 2 ) + 1 2 ( x 1 2 y 1 2 ) = 0 1 Ψ ( μ ) μ 2 d μ {\displaystyle y_{0}(x_{2}+y_{2})+{\frac {1}{2}}(x_{1}^{2}-y_{1}^{2})=\int _{0}^{1}\Psi (\mu )\mu ^{2}\,d\mu }
  • If the characteristic function is Ψ ( μ ) = a + b μ 2 {\displaystyle \Psi (\mu )=a+b\mu ^{2}} , where a , b {\displaystyle a,b} are two constants, then we have α 0 = 1 + 1 2 [ a ( α 0 2 β 0 2 ) + b ( α 1 2 β 1 2 ) ] {\displaystyle \alpha _{0}=1+{\frac {1}{2}}[a(\alpha _{0}^{2}-\beta _{0}^{2})+b(\alpha _{1}^{2}-\beta _{1}^{2})]} .
  • For conservative case, the solutions are not unique. If X ( μ ) ,   Y ( μ ) {\displaystyle X(\mu ),\ Y(\mu )} are solutions of the original equation, then so are these two functions F ( μ ) = X ( μ ) + Q μ [ X ( μ ) + Y ( μ ) ] ,   G ( μ ) = Y ( μ ) + Q μ [ X ( μ ) + Y ( μ ) ] {\displaystyle F(\mu )=X(\mu )+Q\mu [X(\mu )+Y(\mu )],\ G(\mu )=Y(\mu )+Q\mu [X(\mu )+Y(\mu )]} , where Q {\displaystyle Q} is an arbitrary constant.

See also

  • Chandrasekhar's H-function

References

  1. ^ Chandrasekhar, Subrahmanyan. Radiative transfer. Courier Corporation, 2013.
  2. ^ Howell, John R., M. Pinar Menguc, and Robert Siegel. Thermal radiation heat transfer. CRC press, 2010.
  3. ^ Modest, Michael F. Radiative heat transfer. Academic press, 2013.
  4. ^ Hottel, Hoyt Clarke, and Adel F. Sarofim. Radiative transfer. McGraw-Hill, 1967.
  5. ^ Sparrow, Ephraim M., and Robert D. Cess. "Radiation heat transfer." Series in Thermal and Fluids Engineering, New York: McGraw-Hill, 1978, Augmented ed. (1978).
  6. ^ Chandrasekhar, Subrahmanyan. Radiative transfer. Courier Corporation, 2013.